China supplier Transmission Drive Conveyor Chain Roller Chain

Product Description

1) A Series Short-Pitch Transmission Precision Roller Chain
25-1R, 35-1R, 40-1R, 50-1R , 60-1R, 80-1R, 100-1R, 120-1R, 140-1R, 160-1R, 180-1R, 200-1R, 240-1R
Double stand, triple strand are available
2). B Serieis Short-Pitch Transmission Precision Roller Chain
05B-1R, 06B-1R, 08B-1R, 10B-1R, 12B-1R, 16B-1R, 20B-1R, 24B-1R, 28B-1R, 32B-1R, 40B-1R, 48B-1R
Double stand, triple stand are available.
3). Short-Pitch Heavy Roller Chain
40H, 50H, 60H, 80H, 100H, 120H, 140H, 160H, 200H

Our company offers variety of products which can meet your multifarious demands. We adhere to the management principles of “quality first, customer first and credit-based” since the establishment of the company and always do our best to satisfy potential needs of our customers. Our company is sincerely willing to cooperate with enterprises from all over the world in order to realize a CHINAMFG situation since the trend of economic globalization has developed with anirresistible force.

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard or Nonstandard: Standard
Application: Food Machinery
Structure: Roller Chain
Material: Stainless Steel
Type: Double Pitch Chain
Tensile Strength: High


Customized Request

drive chain

Can a drive chain be used in a renewable energy or solar power application?

Yes, a drive chain can be used in certain renewable energy or solar power applications where reliable and efficient power transmission is required. Here is a detailed explanation:

In renewable energy and solar power systems, various components need to be precisely controlled and aligned to harness and transmit energy efficiently. Drive chains offer several advantages in these applications:

  • Precision Power Transmission: Drive chains provide accurate and reliable power transmission, ensuring the precise movement and synchronization of components in renewable energy systems. They can be used to transmit power from the source, such as solar panels or wind turbines, to generators, converters, or other equipment involved in energy conversion and distribution.
  • Adaptability to Variable Loads: Renewable energy systems often experience variable loads and conditions. Drive chains can accommodate these changes and adjust to the varying power requirements, allowing for efficient power transmission and distribution. They offer flexibility in handling different load profiles and variations, ensuring optimal performance and energy conversion.
  • Robustness and Durability: Drive chains are known for their robustness and durability, making them suitable for renewable energy applications that may involve challenging operating conditions, such as outdoor environments or remote locations. They can withstand environmental factors, temperature variations, and exposure to dust, moisture, or corrosive elements, ensuring reliable operation and long service life.
  • Efficient Power Conversion: Drive chains contribute to efficient power conversion and transmission in renewable energy systems. They minimize energy losses through their high power transmission efficiency, enabling maximum utilization of the generated energy. This results in optimized energy conversion and enhanced overall system efficiency.
  • Versatility in System Design: Drive chains offer flexibility in system design and configuration, allowing for the precise alignment and interconnection of components in renewable energy systems. They can be integrated into various types of machinery and equipment, such as solar tracking systems, wind turbines, or hydroelectric generators, enabling customized solutions for different renewable energy applications.
  • Maintenance and Serviceability: Drive chains are relatively easy to maintain and service compared to some alternative power transmission systems. Regular inspection, lubrication, and tension adjustment can ensure optimal performance and extend the service life of the chain in renewable energy applications. This contributes to reduced downtime and enhanced system availability.

It is important to consider the specific requirements and constraints of the renewable energy or solar power application when selecting a drive chain. Factors such as load capacity, speed capabilities, environmental conditions, and maintenance considerations should be taken into account.

By utilizing drive chains in renewable energy and solar power applications, operators can benefit from precise power transmission, adaptability to variable loads, robustness, efficient power conversion, versatile system design, and ease of maintenance, contributing to reliable and efficient utilization of renewable energy sources.

drive chain

How does the weight of a drive chain affect its performance?

The weight of a drive chain can have some impact on its performance, although it is generally not a significant factor. Here is a detailed explanation:

The weight of a drive chain refers to the mass of the chain itself. While the weight of the chain may vary depending on its size, type, and material, it is typically not a critical consideration in most applications. Here are a few points to understand about the weight of a drive chain:

  • Inertia: The weight of the drive chain contributes to its inertia, which is the resistance to changes in motion. In high-speed or dynamic applications, such as robotics or automation, excessive chain weight can increase inertia and potentially affect the responsiveness and precision of the system. However, the weight of the chain is usually relatively small compared to other components in the system, and the impact on performance is often minimal.
  • Tension and Tensioning Mechanisms: The weight of the chain can influence the tensioning requirements and the design of tensioning mechanisms. Heavier chains may require stronger tensioning systems to maintain proper tension and prevent chain slack. It is essential to consider the weight of the chain when designing and implementing tensioning mechanisms to ensure optimal performance.
  • Load Capacity: The weight of the chain itself does not significantly affect the load capacity or strength of the chain. The load capacity is determined by the chain’s design, material, and construction. Proper chain selection based on the specific application requirements is necessary to ensure sufficient load-carrying capacity.
  • Installation and Handling: The weight of the chain can influence the ease of installation and handling, especially in larger or heavier chains. Proper lifting and handling equipment should be used to ensure safe installation and prevent injuries.

Overall, while the weight of a drive chain can have some minor influence on its performance in certain applications, it is typically not a critical factor. Factors such as chain design, material, lubrication, tension, and alignment have a more significant impact on the overall performance and reliability of the drive chain.

drive chain

How do you properly tension a drive chain?

Tensioning a drive chain properly is important to ensure optimal performance, minimize wear, and prevent premature failure. Here are the steps to properly tension a drive chain:

  1. Identify the Tensioning Method: Determine the type of tensioning system used for your specific drive chain. Common tensioning methods include manual adjustment, automatic tensioners, or tensioning devices incorporated into the chain drive system.
  2. Refer to Manufacturer’s Guidelines: Consult the manufacturer’s guidelines or specifications for the recommended tensioning range and procedure specific to your drive chain. Manufacturers often provide specific instructions regarding the appropriate tensioning method and the acceptable slack or sag limits.
  3. Measure the Initial Tension: Measure the initial tension of the drive chain. This can be done using a tension gauge or by applying manual force to the chain at a specific point and measuring the deflection or sag. Ensure that the initial tension is within the recommended range specified by the manufacturer.
  4. Adjust Tension: If the initial tension is outside the recommended range, adjust the tension accordingly. For manual tensioning systems, typically a tensioning device, such as an adjusting bolt or eccentric cam, is used to increase or decrease the tension. Follow the manufacturer’s instructions for the specific adjustment mechanism.
  5. Check Alignment: While tensioning the chain, ensure that it remains properly aligned on the sprockets. Misalignment can cause uneven wear and premature failure. Make any necessary alignment adjustments as per the manufacturer’s recommendations.
  6. Recheck Tension: After tension adjustment and alignment, recheck the tension to ensure it falls within the recommended range. Use a tension gauge or follow the manufacturer’s guidelines for measuring the tension. Repeat the adjustment process if necessary.
  7. Verify Operation: After tensioning, operate the machinery or system with the tensioned chain and observe its performance. Check for any abnormal noise, vibration, or unusual wear patterns. If any issues persist, reevaluate the tensioning and alignment.

It is important to note that proper tensioning may require periodic rechecks and adjustments over time as the chain elongates or wears. Regular maintenance and inspections will help ensure the drive chain remains properly tensioned and aligned for optimal performance and longevity.

China supplier Transmission Drive Conveyor Chain Roller Chain  China supplier Transmission Drive Conveyor Chain Roller Chain
editor by CX 2024-01-05

drive chains

As one of leading drive chains manufacturers, suppliers and exporters of mechanical products, We offer drive chains and many other products.

Please contact us for details.

Mail:[email protected]

Manufacturer supplier exporter of drive chains.

Recent Posts